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A b s t r a c t  

The set o f  large E s  t h r o u g h  wh ich  a s t ruc ture  is so lved  
by  direct  m e t h o d s  is u s u a l l y  chosen  by a conve rgence  
or c o n v e r g e n c e - d i v e r g e n c e  process.  This  process  
a ims  to give a s t rong  p h a s e - e x t e n s i o n  p a t h w a y  start- 
ing f rom a smal l  set o f  E s whose  phases  are k n o w n  
or a l loca ted  in some way.  Some t imes  sets o f r e f l e x i o n s  

* Now at University of Patras, Patras, Greece. 
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thus  o b t a i n e d  are p o o r l y  c o n d i t i o n e d  a n d  u n d e r  
t a n g e n t - f o r m u l a  r e f inement  even  in i t ia l ly  correct  
phases  will  degene ra t e  to r a n d o m n e s s .  A s imple  new 
a l g o r i t h m  has  been  d e v e l o p e d  wh ich  improves  the  
c o n d i t i o n i n g  of  the comple t e  set of  ref lexions  a n d  
the i r  r e l a t i onsh ips  a n d  is more  a p p r o p r i a t e  to cur ren t  
t rends  to s tar t  r e f inement  f rom a comple t e  set o f  
r a n d o m  phases .  A pa r t i cu l a r  fea ture  o f  this  a lgo r i t hm 
is tha t  it max imizes  the  m i n i m u m  n u m b e r  o f  re la t ion-  
sh ips  for  a n y  reflexion.  

© 1991 International Union of Crystallography 
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Introduction 

In earlier forms of direct methods, such as the sym- 
bolic addition method introduced by Katie & Karle 
(1963) and the first version of M U L T A N  (Germain, 
Main & Woolfson, 1970), phase sets were generated 
by a bootstrap operation beginning with a fairly small 
starting set of reflexions. The starting-set phases 
usually contained some which could be allocated 
specifically to fix the origin and enantiomorph and 
others were given either symbols or permuted numeri- 
cal phases. 

In order to ensure a strong development of phases 
using the tangent formula, Germain et al. (1970) 
designed an algorithm called C O N V E R G E N C E  
which aimed to give a phase-extension pathway 
without weak links, i.e. steps where a new phase was 
indicated with a very large variance. The CONVER-  
G E N C E  process is fairly efficient but by no means 
perfect. Lessinger (1976) investigated a number of 
M U L T A N  failures (structures which were eventually 
solved in some other way) and found that correct 
phases were not stable under tangent-formula 
refinement. If correct phases degenerate to random 
values under the given refinement process then they 
are hardly likely to be found in the first place. Other 
workers extended and improved on the CONVER-  
G E N C E  idea by. adding to it a divergence procedure 
and one can find examples of these in the SIMPEL 
package (Schenk, 1973) and S H E L X  (Sheldrick, 
1975). 

Over the past decade or so, a new philosophy of 
phase determination has been introduced in which 
the need to start from a small base has been removed. 
Steps in this direction were the introduction of 
Y Z A R C  (Baggio, Woolfson, Declercq & Germain, 
1978), M A G E X  (Hull, Viterbo, Woolfson & Zhang, 
1981) and culminated in R A N T A N  (Yao, 1981). In 
R A N T A N  all reflexions are allocated initial phases, 
mostly random, and all relationships are brought into 
play, using the tangent formula, from the very begin- 
ning of the procedure. The same feature occurs in 
the more recently introduced Sayre-equation tangent 
formula method, S A Y T A N  (Debaerdemaeker,  Tate 
& Woolfson, 1985, 1988). 

With these new approaches the whole raison d'etre 
of the C O N V E R G E N C E  procedure, creating a 
reliable phase-extension pathway, is invalidated. For 
this reason we have considered alternatives for select- 
ing the set of reflexions in terms of which the structure 
is to be solved. 

The aim 

We go back to the work of Lessinger (1976) who 
found that the reason for a set of correct phases 
deteriorating under tangent formula refinement was 
that a few reflexions were poorly linked, via suitable 
phase relationships, with the remainder. Even correct 

phases gave relatively large errors for the phase esti- 
mates for these reflexions when substituted in the 
tangent formula. These incorrect phases fed back to 
give errors in other phases in such a way that for each 
iteration the phase errors became larger until event- 
ually the initially correct phases were randomized. 
To counteract this process as much as possible the 
C O N V E R G E N C E  process was modified in 
M U L T A N ;  50 extra reflexions were included in the 
system to generate Y~2 relationships and then in the 
C O N V E R G E N C E  process the 50 reflexions which 
were the first to be eliminated, which were probably 
(but not certainly) the least well connected to the 
system as a whole, were then removed. 

As previously stated, for methods like R A N T A N  
which used all relationships immediately, the 
C O N V E R G E N C E  criterion of having a strong 
phase-extension pathway was not relevant. What was 
relevant was that no phases should be poorly linked 
to the whole system because correct phases might 
then be unstable under the refinement process. The 
requirement for avoiding this situation is that even 
the least well linked reflexion should give a phase 
estimate with the smallest possible variance. This is 
equivalent to having as large a value as possible of 

a(h)  = I~ K(h, k )exp  { ¢ ( h ) - ¢ ( k ) - ~ o ( h - k ) }  I (1) 

where 
K(h, k) = 2(cr3/~r3/2)lE(h)E(k)E(h-k)l  

and or, = Y-i~l z~. There are N atoms in the unit cell 
and the atomic number of the ith atom is zi. While 
a knowledge of phases is required to calculate a(h) ,  
it can be estimated from the magnitudes of normalized 
structure factors with 

~o~(h) = |X  K(h, k) ~ + E E g(h, k) K(h, k') 
t.k k k' 

k # k '  

ll{K(h, k)} Ii{K(h,k')}'~ 1/2 

x Io{K(h, k)} lo{K(h, k')}J (2) 

where Io(x) and l l (x)  are modified Bessel functions. 
For a complete set of reflexions and a given number 

of relationships it is better to have a uniform number 
of relationships per reflexion than to have large 
differences so that some reflexions have a large value 
of a while others have much smaller values. The 
reason for this can be seen in the way that the variance 
of a phase estimate depends on the value of a, which 
was given by Karle & Karle (1966) and is shown in 
Fig. 1. If a reflexion has a value of a given by the 
point P in the figure then the change in a produced 
by having one more or one less relationship will 
change the variance very little. On the other hand, 
the change of a produced by the addition of one 
relationship for a reflexion with a corresponding to 
point Q may significantly reduce the variance. 
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While the values of aest are the actual quantities 
of interest in deciding on the reliability or otherwise 
or phase indications we have found in practice that 
simply using the number of relationships for a 
reflexion is just as effective and makes the algorithms 
we propose much simpler to implement. 

On the basis of the above considerations we con- 
clude that for a given total number of large-magnitude 
reflexions they should be chosen: 

(1) to have as many relationships as possible; 
(2) to have as little variation in the number of 

relationships per reflexion as possible; 
(3) to have the minimum number of relationships 

for a reflexion as large as possible, consistent with 
(1) and (2). 

Thus, in an ideal case, if there were 2000 different 
phase relationships (each involving three phases) 
linking 200 reflexions then one would like to have 
exactly 30 relationships for each reflexion. 

Methods of choosing reflexions 

To achieve the conditions set out in the previous 
section the set of reflexions was chosen to maximize 
some function and four different functions were tried: 

Q , = e x p ( ~ )  E[E(h)lexp[-yl l -n(h)/al]  (3) 
h 

Q2=aO~]E(h)l{1-exp[-n(h)/~]} (4) 
h 

Q3 = E log {[E(h)ln(h)} (5) 
h 

Qa=nT, (6) 

where t i=average  number of relationships per 
reflexion, n ( h ) = n u m b e r  of relationships for the 
reflexion of index h, nT= total number of relation- 
ships and/3  and 3/are two numerical parameters. 

Two different methods (M1 and M2 below) were 
developed to maximize the selected function for a 
predetermined number of reflexions. In each method 

v 

3 

P 
I 
5 O/ 

0 1 
o lO 

Fig. 1. The variance, V, of a phase estimate given by the tangent 
formula as a function of a. 

the starting point is an initial number of reflexions 
N~ and the relationships linking them and the aim is 
to finish with NF reflexions having the largest value 
of Q,. 

When we have our final NF reflexions we judge 
the effectiveness of the combination of method and 
optimized function by the three quantities na-, pre- 
viously given, nmin, the minimum number of relation- 
ships for any reflexion, and nmax, the maximum num- 
ber of relationships for any reflexion. From the point 
of view of the conditioning of the final set of 
reflexions, undoubtedly the most important of the 
three quantities is nmi,, which should be'as large as 
possible. 

Method M1 
(i) We start with N~ reflexions and eliminate them 

one by one by the CONVERGENCE procedure until 
40 remain. 

(ii) Reflexions are added one by one to the starting 
set of 40 under the condition that the reflexion added 
should give the largest value of Q~. This is continued 
until there are 40+ NF reflexions. 

(iii) Reflexions are eliminated one by one under 
the condition that the reflexion removed should leave 
the largest value of Q~. This is continued until Np 
reflexions remain. 

In this final step, reflexions can be eliminated two 
or three at a time without making much difference to 
the process. 

Method M2 
(i) We start with NI reflexions and eliminate them 

one by one with the CONVERGENCE process until 
40 remain. 

(ii) Reflexions are added one by one to the starting 
set of 40 under the condition that the one added 
should give the largest value of Qi. This is continued 
until there are Nt: reflexions. 

(iii) The reflexions are now considered in two 
groups - group A containing the NF reflexions found 
in (ii) and group B containing the residual NI-NF 
reflexions. Phase relationships are found linking three 
A-group reflexions (AAA) and one B and two A 
reflexions (BAA). 

(iv) The reflexion with the minimum number of 
relationships, nmin(A), from group A is found and 
that with the maximum number, nmax(B), from group 
B. If t l m i n ( A  ) < nmax(B) then the two reflexions are 
interchanged in groups. 

Steps (iii) and (iv) are repeated until nmin(A)-> 
nmax(B). 

There is a third method (M3)  which does not use 
the Q, functions but merely seeks to maximize the 
value of r lmi n .  

(i) We start with Nt reflexions and reduce them 
by convergence until NF remain. 

Steps (ii) and (iii) are then steps (iii) and (iv) of M2. 
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Table 1. A comparison of  methods M1, M2 and M3 with CONVERGENCE for a selection of structures 

The three columns under  each structure are nr, nmi n and nma x. For  all cases NF = 200. 

Co~ i sone  R o m a l  Roma2 Roma4 Nancy l  

M1 Q~ y = 1 3797 33 135 2332 22 70 1488 9 51 1490 13 56 1221 9 56 
y = 2 3797 33 137 2335 23 75 1510 9 49 1489 13 55 
y = 3 3797 33 137 2334 23 75 1510 9 49 1490 13 53 
y = 4 3786 33 134 2334 23 75 1508 9 48 1492 13 54 

Q2 fl = 1 3778 28 134 2314 20 75 1491 9 48 1484 11 54 1205 8 56 
= 2 3786 26 133 2334 22 70 1497 9 49 1491 13 54 
= 3 3791 33 133 2329 22 74 1497 9 49 1492 13 55 

Q3 3771 31 131 2304 20 73 1473 10 49 1481 12 56 1214 9 54 
04 3792 33 134 2335 23 71 1485 10 48 1487 13 52 1218 10 53 

M2 Qt y = 1 3802 33 138 1492 13 56 
Q2 fl = 1 3802 33 138 1494 13 57 
Q3 3798 32 135 1483 13 54 
04 3796 32 137 1492 13 54 

M 3 3798 33 135 2328 22 76 1512 9 48 1476 13 57 1262 I1 50. 
CONVERGENCE 3554 16 128 2174 16 73 1428 8 47 1413 7 59 1191 8 48 

Results 

Table 1 shows the results obtained for a selection of 
structures, the details of which are shown in Table 2. 
The first thing to notice is that all three methods M 1, 
M2 and M3 are superior to CONVERGENCE and 
sometimes markedly so in the critical number nmi,. 
It should also be mentioned that M1 and M2 are 
very expensive in computer time; this explains the 
gaps in Table 1 and also the fact that the methods 
were based on the numbers of relationships rather 
than trying to use values of a, which would have 
made the process even longer. Whilst methods M1 
and M2 were being examined - with the idea that if 
they were effective then some method of speeding 
them up would be f o u n d - t h e  much simpler M3 
process occurred to us. This is very quick and easy 
(1 to 2 min on a VAX 8650) and is as effective as the 
other methods, or nearly so. 

Comparisons have been made on the conditioning 
of sets of reflexions found by M3 and CONVER- 
GENCE by refining correct phases to self- 
consistency by the tangent formula. In all cases the 
M3-derived sets are better than those from CON- 
VERGENCE, sometimes very much better. As an 
example, for cortisone the correct phases for 150 
reflexions from CONVERGENCE refined to a r.m.s. 
error of 32-0 ° while correct phases for 150 reflexions 
from M3 refined to a r.m.s, error of 27.1 °. 

Concluding remarks 

It must be stressed that the rationale for the 
approach described here is to optimize the charac- 
teristics of a whole set of reflexions with all corre- 
sponding relationships. In early direct methods the 
critical stage was considered to be the early phase- 
extension process; emphasis was directed towards 
obtaining new phase estimates as close to being cor- 
rect as possible from the starting set of phases which 
was the closest to being correct. This was the aim of 
the CONVERGENCE process and the various con- 

Table 2. Details of  the structures used in the tests 

Formula  Space group Z 

Cortisone C21H2oO 5 P212t21 4 
Romal C4oH47Br2N8OIoS 2 P4t212 8 
Roma2 C2~ H3405 C2 8 
Roma4 C42HsoCINO 9 P2t212 t 4 
Nancyl C37H48NOt 2PF6 P21 2 

N u m b e r  o f  
independent  

non-hydrogen  
atoms 

26 
62 
52 
53 
57 

vergence-divergence procedures of other workers. 
The realization that taking random starting phases, 
even for all the reflexions in the system, is an effective 
way to solve structures has pointed to phase 
refinement rather than phase extension as the critical 
process. This points to a new criterion for selecting 
the set of large E s - t h a t  correct phases must not 
grossly degenerate under the refinement process-  
which is the topic of this paper. 

Out gratitude is due to the Science and Engineering 
Research Council and to the European Economic 
Community for their support of this work. 
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